Graphene-clad microfibre saturable absorber for ultrafast fibre lasers

نویسندگان

  • X. M. Liu
  • H. R. Yang
  • Y. D. Cui
  • G. W. Chen
  • Y. Yang
  • X. Q. Wu
  • X. K. Yao
  • D. D. Han
  • X. X. Han
  • C. Zeng
  • J. Guo
  • W. L. Li
  • G. Cheng
  • L. M. Tong
چکیده

Graphene, whose absorbance is approximately independent of wavelength, allows broadband light-matter interactions with ultrafast responses. The interband optical absorption of graphene can be saturated readily under strong excitation, thereby enabling scientists to exploit the photonic properties of graphene to realize ultrafast lasers. The evanescent field interaction scheme of the propagating light with graphene covered on a D-shaped fibre or microfibre has been employed extensively because of the nonblocking configuration. Obviously, most of the fibre surface is unused in these techniques. Here, we exploit a graphene-clad microfibre (GCM) saturable absorber in a mode-locked fibre laser for the generation of ultrafast pulses. The proposed all-surface technique can guarantee a higher efficiency of light-graphene interactions than the aforementioned techniques. Our GCM-based saturable absorber can generate ultrafast optical pulses within 1.5 μm. This saturable absorber is compatible with current fibre lasers and has many merits such as low saturation intensities, ultrafast recovery times, and wide wavelength ranges. The proposed saturable absorber will pave the way for graphene-based wideband photonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons

Molybdenum disulfide (MoS2), whose monolayer possesses a direct band gap, displays promising applications in optoelectronics, photonics, and lasers. Recent researches have demonstrated that MoS2 has not only a significant broadband saturable absorption performance, but also a higher optical nonlinear response than graphene. However, MoS2 shows much lower optical damage threshold owing to the po...

متن کامل

Polarization insensitive graphene saturable absorbers using etched fiber for highly stable ultrafast fiber lasers.

In this paper, we introduce a graphene-based saturable absorber (GSA) with high damage threshold employing symmetrical evanescent wave interaction for highly stable mode-locking of ultrafast fiber lasers. To enhance the evanescent wave interaction between the graphene layer and the propagating light, graphene flakes are mixed with polydimethylsiloxane (PDMS), and the graphene/PDMS composite is ...

متن کامل

Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpfu...

متن کامل

科学网博客-[转载]Graphene and Lasers Become Ultrafast Friends

Ultrafast laser sources have garnered considerable attention for their many potential applications, ranging from meteorology to telecommunications, medicine, and materials processing. Most of these lasers employ a mode-locking technique in which a nonlinear optical element, called a saturable absorber,turns the laser's continuous wave output into a train of ultrashort optical pulses. Currently,...

متن کامل

Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers.

Passive Q-switching or mode-locking by placing a saturable absorber inside the laser cavity is one of the most effective and popular techniques for pulse generation. However, most of the current saturable absorbers cannot work well in the visible spectral region, which seriously impedes the progress of passively Q-switched/mode-locked visible pulsed fibre lasers. Here, we report a kind of visib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016